Wavelet bases of Hermite cubic splines on the interval
نویسندگان
چکیده
In this paper a pair of wavelets are constructed on the basis of Hermite cubic splines. These wavelets are in C1 and supported on [−1, 1]. Moreover, one wavelet is symmetric, and the other is antisymmetric. These spline wavelets are then adapted to the interval [0, 1]. The construction of boundary wavelets is remarkably simple. Furthermore, global stability of the wavelet basis is established. The wavelet basis is used to solve the Sturm–Liouville equation with the Dirichlet boundary condition. Numerical examples are provided. The computational results demonstrate the advantage of the wavelet basis.
منابع مشابه
Numerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines
In this paper, We use the wavelet bases of Hermite cubic splines to solve the second kind integral equations xCi) -11 K(t,s)x(s)ds = y(t), t E [0,1]. A pair of wavelets are constructed on the basis of Hermite cubic spline~: This wavelets are in C1 and supported on [0,2]. Moreover, one wavelet is symmetric, and the other is anti-symmetric. This spline wavelets are then adapted to the interval [0...
متن کاملWavelet Bases of Hermite Cubic Splines on the Interval † Dedicated to Dr . Charles A . Micchelli
In this paper a pair of wavelets are constructed on the basis of Hermite cubic splines. These wavelets are in C and supported on [−1, 1]. Moreover, one wavelet is symmetric, and the other is anti-symmetric. These spline wavelets are then adapted to the interval [0, 1]. The construction of boundary wavelets is remarkably simple. Furthermore, global stability of the wavelet basis is established. ...
متن کاملInterpolatory biorthogonal multiwavelet transforms based on Hermite splines
We present new multiwavelet transforms for discrete signals. The transforms are implemented in two phases: 1. Pre (post)processing which transform the scalar signal into the vector one (and back). 2.Wavelet transforms of the vector signal. Both phases are performed in a lifting manner. We use the cubic interpolatory Hermite splines as a predicting aggregate in the vector wavelet transform. We p...
متن کاملBiorthogonal Multiwavelets on the Interval: Cubic Hermite Splines
Starting with Hermite cubic splines as the primal multigenerator, first a dual multigenerator onR is constructed that consists of continuous functions, has small support, and is exact of order 2. We then derive multiresolution sequences on the interval while retaining the polynomial exactness on the primal and dual sides. This guarantees moment conditions of the corresponding wavelets. The conc...
متن کاملBiorthogonal cubic Hermite spline multiwavelets on the interval with complementary boundary conditions
In this article, a new biorthogonal multiwavelet basis on the interval with complementary homogeneous Dirichlet boundary conditions of second order is presented. This construction is based on the multiresolution analysis onR introduced in [DHJK00] which consists of cubic Hermite splines on the primal side. Numerical results are given for the Riesz constants and both a non-adaptive and an adapti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 25 شماره
صفحات -
تاریخ انتشار 2006